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ABSTRACT 

Many tracking algorithms, such as implementations of Kaiman filters, use only 

target positioning data as input. They ignore negative information from sensors that do 

not detect the target. Recent improvements in computing performance allow the 

development of tracking algorithms that can fuse information from many sources, 

including negative information, into the target motion analysis. This thesis evaluates the 

significance of negative information in a discrete tracking algorithm applied to a tracking 

scenario in which an array of forward scatter tripwire sensors covers the search area. 

Additionally, this thesis explores the effect of selected arrangements of an array of 

tripwire sensors and performance parameters on tracking capability. Using negative 

information significantly improves tracking performance, especially in a cost-effective 

arrangement of tripwires where several lines of position are coincident. 
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THESIS DISCLAIMER 

The reader is cautioned that computer programs developed in this research may not 

have been exercised for all cases of interest. While every effort has been made, within 

the time available, to ensure that the programs are free of computational and logic errors, 

they cannot be considered validated. Any application of these programs without 

additional verification is at the risk of the user. 
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EXECUTIVE SUMMARY 

Many tracking algorithms or trackers operate using only sensor information that 

indicates a potential target. They thus ignore the negative information from sensors that 

do not detect the target. These trackers, such as the Maneuvering Target Statistical 

Tracker (MTST), are frequently based on extended Kaiman filters (Stone, 1991). 

Recent improvements in computing performance allow the development of trackers 

that can fuse information from many sources, including negative information, into the 

target motion analysis. The primary examples are search tactical decision aids (TDAs) 

such as VPCAS, PACSEARCH, ASWTDA, (Wagner, 1989), and Nodestar (Stone, 

1991). There is sufficient computational difficulty in the fusion of negative information 

to warrant investigation of the significance of this data, and evaluation of the accuracy 

of the resulting target distributions. 

This thesis considers a discrete tracking algorithm applied to a tracking scenario 

in which an array of forward scatter tripwires covers the search area. The tripwire model, 

based on current research at the Johns Hopkins University Applied Physics Laboratory 

(JHU-APL) in bistatic forward scatter acoustic arrays, provides a long-range line segment 

capable of reporting, with certain probability, the presence (or absence) of a target 

crossing the tripwire during a given time interval. Practical considerations determine a 

few basic arrangements of an array of such tripwires. 

Some mathematical models of the performance of such an array assume that the 

contribution of negative information to the tracking algorithm is negligible (Loane, 

September 1993, p. 9). This thesis shows that fusion of negative information into a 

tracking algorithm can significantly enhance its performance. The effect is most distinct 

in arrangements of line-of-position sensors that share a common point, and in situations 

where spurious (false) alarms produce a large number of detections. In the case of 

forward scatter arrays, where cost-effective arrangements of tripwires will likely have 

coincident endpoints, fusion of negative information into the target motion analysis is 

necessary to produce accurate results. 

XI 



Implementation of tracking using negative information requires estimates of the 

probabilities of target detection as well as false alarms. While improper assumptions 

degrade tracker performance, their effect is less significant than choosing not to take 

negative information into account. 

In a source-receiver implementation of tripwires, practical implementation of an 

array of tripwires would involve placement of many receivers around each source. 

Constant-cost analysis of the effects of leaving gaps in, or overlapping, coverage, shows 

that arrangement of the sources just far enough apart to provide complete coverage results 

in the best localization of the target. 

Addition of tripwires can continually enhance the performance of a field of 

tripwires. This thesis indicates that a minimum number of tripwires are needed to provide 

adequate tracking capability, with further additions marginally improving performance. 

This thesis may be used as a starting point for further analysis into the significance 

of negative information for other types of tracking systems, and provides useful insight 

into the practical arrangement of a forward scatter tripwire array. 
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I.  INTRODUCTION 

A. PROBLEM DEFINITION 

Many tracking algorithms or trackers operate using only sensor information that 

indicates a potential target. They thus ignore the negative information from sensors that 

do not detect the target. These trackers, such as the Maneuvering Target Statistical 

Tracker (MTST), are frequently based on extended Kaiman filters (Stone, 1991). 

Recent improvements in computing performance allow the development of trackers 

that can fuse information from many sources, including negative information, into the 

target motion analysis. The primary examples are search tactical decision aids (TDAs) 

such as VPCAS, PACSEARCH, ASWTDA, (Wagner, 1989), and Nodestar (Stone, 

1991). There is sufficient computational difficulty in the fusion of negative information 

to warrant investigation of the significance of this data, and evaluation of the accuracy 

of the resulting target distributions. 

This thesis considers a discrete tracking algorithm applied to a tracking scenario 

in which an array of forward scatter tripwires covers the search area. The tripwire model, 

based on current research at the Johns Hopkins University Applied Physics Laboratory 

(JHU-APL) in bistatic forward scatter acoustic arrays, provides a long-range line segment 

capable of reporting, with certain probability, the presence (or absence) of a target 

crossing the tripwire during a given time interval. Practical considerations determine a 

few basic arrangements of an array of such tripwires. 

Some mathematical models of the performance of such an array assume that the 

contribution of negative information to the tracking algorithm is negligible (Loane, 

September 1993, p. 9). This thesis evaluates the validity of that assumption, as well as 

the merits of selected tripwire array arrangements. 

B. TRACKING ALGORITHM AND SIMULATION 

This thesis develops a simulation and tracking algorithm, called HexTrack, 

programmed  in  Turbo  Pascal  (Borland,   1992).     HexTrack incorporates  detection 



information from a simulated array of tripwire sensors arranged in a search area. 

HexTrack generates real detections by simulating target motion in a discrete target 

position state space, although the tracking algorithm does not use its knowledge of actual 

target location. HexTrack also generates spurious detections {false alarms) from the 

tripwire sensors. Two separate trackers generate likelihood distributions: the positive 

information tracker incorporates only detection information, and the negative information 

tracker incorporates both alarm and non-alarm information. HexTrack then compares the 

likelihood distributions to the simulated target position to evaluate tracker performance. 

The target state space consists of 6,290 hexagonal cells covering a 150 by 150 

nautical mile search area. HexTrack uses hexagonal cells to take advantage of radial 

symmetry for target motion and to avoid the complications of cells adjacent to each other 

only at corners. (Six other cells border each interior cell on its edges.) Memory, data 

segment, and heap size constraints in Turbo Pascal limit the number of cells. HexTrack 

calculates an alarm probability for each cell-tripwire combination, accounting for the 

probability that the tripwire alarm is a result of target presence in that cell, as well as the 

probability of a false alarm. 

HexTrack initializes the trackers with likelihood distributions uniform over the 

search area and the target in a randomly chosen cell. On each iteration, representing a 

step of discrete time, HexTrack: 

1. Updates actual target position, using a random number generator. 

2. Calculates new likelihood distributions, based on the likelihood distribution 
at the end of the previous iteration and target motion probabilities (motion 
update). 

3. Calculates tripwires alarming, using a random number generator and 
conditioning on actual target position. 

4. Updates both trackers' likelihood distributions to incorporate tripwire alarm 
information (positive information update), if any. 



5. Updates   the   negative   information   tracker's   likelihood   distribution   to 
incorporate tripwire non-alarm information (negative information update). 

6. Calculates and records tracker performance statistics. 

C.  MEASURES OF EFFECTIVENESS 

Point estimates of target position are the basis for the usual measure of 

effectiveness (MOE) for a tracking system, missed distance. Since HexTrack produces 

likelihood distributions of target position, a more appropriate MOE is mean missed 

distance. (Stone, 1991, p. 8) Additionally, this thesis uses an MOE representing accuracy 

of the likelihood distributions.  Chapter in discusses these MOEs in detail. 





II.  TRACKING MODEL 

A.  TRIPWIRE DETECTION MODEL 

The simulated sensors providing detection/non-detection information to HexTrack 

are based on bistatic forward scatter acoustic arrays. These arrays operate by transmitting 

sound omnidirectionally from an acoustic source. When a target (normally a submarine) 

is near the line between the source and a remote receiver, the target scatters additional 

sound energy towards the receiver. The additional energy at the receiver, if above a 

predetermined threshold, indicates a detection. (Loane, December 1993) Because the 

target scatters the most acoustic energy directly opposite the source (forward scattering), 

detections only occur in the vicinity of the line between the source and receiver, hence 

the term tripwire.  Figure 1 illustrates the basic operation of a forward scatter array. 

Figure 1. Operation of a forward scatter array (tripwire). As the target passes 
between the source and receiver, sound from the source is scattered forward past the 
target.  The additional noise at the receiver is interpreted as a detection. 

Forward scatter arrays are capable of detection ranges much longer than other 

bistatic arrays (Loane, 1992). A realistic, unclassified estimate of maximum detection 

range is 50 miles. This thesis models tripwires as rectangular areas two miles wide and 

up to 50 miles in length. Detections occur as Bernoulli trials, occurring once for each 

tripwire at the end of 7.06 minute time intervals. The target motion model is the basis 

for interval length. HexTrack assumes the probability that a tripwire detects the target 

during a single time interval is uniform over the entire search area, independent from 

interval to interval, and independent of other tripwires.  In addition to detections caused 



by target presence in the detection area, each tripwire has a probability during each time 

interval of generating a spurious (false) alarm, independent of other tripwires, the target, 

and from interval to interval. In reality, detection and false alarm probabilities would 

vary with geographic and environmental conditions, and potentially be subject to 

interference from the acoustic sources of other tripwires. 

B. TRIPWIRE FIELD PATTERNS 

Each receiver can potentially detect along the line to multiple sources. Cost 

considerations encourage use of this feature. Since acoustic sources are at least an order 

of magnitude more expensive than receivers (Loane, 1992), a field of tripwires would 

likely consist of multiple receivers arranged around each source. Figure 2 shows an 

example of a portion of such a field. Appendices A, B, and C show this Spoke pattern 

and other tripwire patterns considered in this thesis. 

C. TARGET MOTION MODEL 

Target motion in HexTrack is based on a Markov state transition matrix operating 

on target position at each iteration. During each iteration, the target remains in the same 

cell with some probability, or moves to one of the six adjacent cells. 

A separate simulation allowed empirical determination of position state transition 

probabilities, both unconditional and conditioned on the position state transition on the 

previous iteration, which represents a velocity state. Appendix D lists the target motion 

assumptions, simulation, and resulting transition probabilities. The motion update for the 

likelihood distribution does not use target velocity information due to programming 

limitations on numbers of variables. Chapter IV explores the significance of this 

simplification. 
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Figure 2. A portion of the Spoke tripwire pattern. Several receivers form tripwires 
with each source. Only a repeating element of the pattern is illustrated; the sources 
are arranged in equilateral triangles to fill up space. 

D.  FUSION OF DETECTION AND NON-DETECTION INFORMATION 

HexTrack performs three major steps each iteration: a motion update, an 

information update, and display of the updated distribution. Appendix E lists the 

HexTrack source code. The following sections outline the computations performed in 

each step. 

1. Motion Update 

The tracker assumes target motion is determined by a Markov transition 

probability matrix M, with entries 

Mi} = Pr(target in cell / moves to cell j), 



where row sums 

j 

Actual target motion in the HexTrack simulation is determined by the same matrix M in 

cases where the velocity state is ignored. 

Let Yk be the target's position at iteration k. Let Pk be a row vector of 

probabilities 

Pik = V?(Yk=i | information through iteration k), 

where 

EP* = ! • (2) 
i 

Pk is the tracker's presumed distribution of target position at the end of the £th iteration, 

given the initial distribution and all motion and information updates from k and previous 

iterations. 

The motion update from iteration k to k+1 is 

rk+l        rkm  » 

where 

P'iMi = Pr(^t+y=J" I information through iteration k). 

The superscript - denotes that this distribution does not yet include information from 

iteration k+1. 

2.  Information Update 

Tripwires alarm (report a detection) either as a result of target presence in a cell 

near the detecting tripwire or as a result of a spurious alarm. For each cell i and tripwire 

j, calculate an alarm probability 

Ai; = Pr(tripwire j alarms given target is in cell /). 

For each cell i, define the non-alarm probability NAPt as the probability that no tripwires 

alarm if the target is in that cell.  Then 

NAPt = l[{l-Af. (4) 



For the positive information tracker, the information update for each cell / is 

P+     = P~ n \ 
i 

alarmed 

(5) 

The negative information tracker includes the probability of tripwires not alarming 

in the information update: 

P+     = P~ n \ 
J 

alarmed 

n (i 
j not 

alarmed 

-4/) (6) 

Note that the negative information tracker uses both positive (detection) and negative 

(non-detection) information. The abbreviation of the description is made for ease of 

readability. 

For ease of calculation, Equation 6 can be rewritten 

P+     = P~ n ~^— 
alarmed 

NAP, (7) 

The distribution is normalized to a probability distribution by 

P + 

P: ijc+l 

X) Pi*+\ 
(8) 

Equations 6 and 8 are a straightforward application of Bayes' formula (Ross, 1993, p. 14). 

The use of products of probability reflects the assumption of independence of detections. 

3.  Display 

After each iteration, HexTrack displays the likelihood distributions. HexTrack 

sorts cells by Pik and displays them with brighter colors representing higher likelihoods. 



Each color change represents the boundary of an Area of Uncertainty (AOU) or 

containment region. The display also shows actual target location, permitting qualitative 

analysis of tracker performance. 

Figure 3 is an example of HexTrack's display. The color shades are reversed such 

that the darker shades of grey represent the brighter colors on the display and indicate 

higher likelihood. The actual target position, unknown to the tracker, appears as a white 

(black in the figure) dot just above and to the left of the center of the search area. The 

target is near a tripwire that it caused to alarm; false alarms have occurred on several 

other tripwires in the search area. The likelihood distribution is higher for both trackers 

on the alarming tripwires, highest where the alarmed tripwires are near enough that target 

motion could account for both alarms. The negative information tracker shows the effect 

of non-alarm information, suppressing the likelihood distribution on tripwires that did not 

alarm. Most of the likelihood for the positive information tracker is in the center, where 

six alarmed tripwires intersect. 

Note that Figure 3 is after only two iterations, so very little information has been 

accumulated for either tracker, and the distribution is highly multimodal. Figures 6 and 

7, in Chapter IV, show similar comparisons after several more iterations. 

The statistics shown at the bottom of Figure 3 are examples of the performance 

statistics HexTrack computes during the display process. Chapter III discusses the 

purpose and calculation of these statistics. 
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Negative Information Tracker Positive Information Tracker 

non-alarming tripwires 

Mean Missed Dist:  58.820183     Mean Missed Dist:  31.846104 
AOU to include T:  0.749950      AOU to include T:  0.983986 
Prop, in 50X AOU:  0.500000      Prop, in 5OX AOU:  0.000000 

Number of iterations:       2 

Figure 3. Screen capture of HexTrack display. The negative information tracker 
suppresses likelihood at tripwires that do not alarm. The positive information tracker's 
distribution is highest at the intersection of the alarmed tripwires. 
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ffl.  DATA ANALYSIS METHODS 

To quantitatively compare the performance of the negative information tracker and 

the positive information tracker, appropriate Measures of Effectiveness (MOEs) are 

necessary. The MOEs used relate to two factors: the tracker's ability to estimate true 

target position, and the accuracy of the calculated distribution. The distances from target 

locations predicted by the tracker to the actual target location, weighted by likelihood, 

represent the ability of the tracker to estimate target position. With this measure, smaller 

is better. Accuracy is a statistical measure of how well the target likelihood distribution 

represents the tracker's uncertainty of the target's position. Accuracy measures range 

from 0 to 100%, where larger is better. The following sections formally define these 

MOEs. 

Both MOEs discussed rely on knowledge of actual target position for calculations. 

Although HexTrack keeps track of target position for the generation of real sensor 

contacts and collection of these performance statistics, the trackers do not use this 

knowledge to generate the likelihood distributions. 

HexTrack records data for 50 iterations, approximating a six hour tracking period, 

replicating each set of parameters 60 times. At the beginning of each replication, 

HexTrack resets the target likelihood distributions to uniform over the search area, and 

relocates the target randomly in the search area. Both MOEs are then applied to the 

resulting 3000 data points. 

A.  MEAN MISSED DISTANCE (MMD) 

The usual measure of tracker performance for trackers that produce point estimates 

of target position is missed distance. This measure is not appropriate for HexTrack 

because HexTrack does not forecast a specific target position, but a generalization of this 

measure is straightforward.  Let 

Pi = calculated probability the target is in cell i 

and 
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dl - distance from cell / to the target position. 

Then the root mean squared missed distance (Stone, 1991, p. 10) is 

MMD = N?M (9) 

HexTrack calculates MMD on every iteration of the simulation, and uses the mean 

MMD over all iterations and replications. 

B.  ACCURACY 

Using mean missed distance as the sole MOE is not sufficient. A specific 

example is a bimodal target distribution. A unimodal distribution with a peak between 

the modes of the actual distribution could have a lower MMD than the actual distribution. 

In the MMD calculation, it is better to be half-right all of the time than to be right only 

half the time. Figure 4 shows a one-dimensional example of this problem. The bimodal 

distribution has a missed distance of 0 with probability 0.5 and 2 with probability 0.5, 

resulting in an MMD of 1.414. The unimodal distribution has a missed distance of 1 with 

probability 1.0. An MOE representing the accuracy of a tracker's distribution is 

necessary. 

Bimodal Distribution 

^AO^ 

1' 
f 20.4- 

1 ,§0.2- 

0- '" i i i 

Unimodal Distribution 

fo.8 

«0.6 

§0.4 

0 

Target Location 

Target located at 0 or 2 with probability 0.5 each. 

MMD=1.414 MMD=1.000 

1 2 
Target Location 

Figure 4.  Example of an inaccurate unimodal distribution that has a lower MMD 
than the actual bimodal distribution.  An MOE measuring accuracy is necessary. 
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The target position probability distribution allows calculation of Areas of 

Uncertainty (AOUs). Trackers based on Kaiman filters, whose distribution for target 

position is bivariate normal, frequently specify a 2G (86.5%) uncertainty ellipse around 

the mean estimated target position. If the tracker is accurate, this AOU contains the 

target 86.5% of the time. HexTrack produces analogous containment regions by sorting 

the probabilities that the target is in each cell from highest to lowest. The X% 

containment region consists of the highest likelihood cells that must be summed to reach 

X% cumulative probability. 

On each iteration, HexTrack records the smallest containment region that includes 

the target. This region includes all cells with likelihood higher than the cell containing 

the target and a random portion of the cell containing the target. It is the discrete 

counterpart of the proportion of a bivariate normal distribution contained inside an ellipse 

intersecting the target. The containment percentile of this region, for a target in cell t on 

iteration k, is 

x
k = EPt + »W» (io) 

i\pt>p, 

where u is a uniform random variable from [0,1]. If the tracker is accurate, the xk values 

correspond to selection of random variables from a uniform distribution on [0,1]. The 

multiplication by u in Equation 10 assures that xk is uniformly distributed, as long as the 

target's location / actually has the distribution p,.   (Stone, 1991, p. 9) 

To calculate accuracy, all xk, from 60 replications of 50 iterations each, are sorted 

with x(1) being the smallest and x(mo) the largest. These values define an empirical 

distribution function: 

0       for x < x(1) 

F(X) = ] 3ÖÖÖ   f°r *» * X < *(*+1) '     *=1'2' • '29" (U) 

.1      for x * x(3000) . 
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The Kolmogorov-Smirnov (K-S) statistic, representing the maximum deviation of this 

empirical function from the uniform distribution, is 

D = max|F(*) - JC| . (12) 
X 

Accuracy is then defined (Stone, 1991, p. 12) as 

A = 100(1 - D) % . (13) 

If the tracker produces a likelihood distribution that accurately represents its 

uncertainty in estimating target position, D is near zero and Accuracy is near 100%. Note 

that D is a K-S statistic in spite of the fact that the distribution of the target's position is 

discrete because of the inclusion of a random portion of the cell containing the target. 

Figure 5 shows an example of accuracy measurements. In the pessimistic tracker, 

the worst error shows the 42% containment region containing the target 79% of the time. 

The optimistic tracker contains the target in the 42% containment region only 16% of the 

time. The accurate tracker contains the target in the 19% containment region 22% of the 

time. 

It is important to observe that Accuracy alone is not a sufficient MOE. A 

likelihood distribution that continues to assume the target is distributed uniformly over 

the search area produces a very accurate distribution, but with a high MMD. Roughly 

speaking, the best tracker minimizes MMD among trackers that are highly accurate. 

16 



Pessimistic Tracker Optimistic Tracker 

1 

K-S statistic: 0.26 
Accuracy: 7496 

K-S statistic: 0.37 
Accuracy: 6396 

02        0.4        0.6        OJ l 
Containment Region, X 

H 
•g 0.4- 

02 04 0.6 0.1 
Containment Region, X 

Accurate Tracker 
l-, 

K-S statistic: 0.03 
Accuracy: 9796 

0.4 0.6 0.8 1 
Containment Region, X 

Figure 5.   Examples of accuracy measurement in pessimistic, accurate, and optimistic 
trackers.  Both pessimistic and optimistic trackers result in low accuracy. 
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IV.  RESULTS 

This chapter considers three different patterns of tripwire arrangement. In addition 

to a spoke pattern that uses multiple receivers arranged around each source, a regular 

square grid of tripwires and (uniform) random placement of tripwires are considered. 

Appendix A shows these three arrangements, which are comparable in the cumulative 

length of tripwires in the search area. Since the tripwire model assumes the sensors cover 

the area of their length and a fixed width, this comparison of patterns considers 

comparable density of tripwire coverage. Cost considerations are deferred until Chapter 

V. 

A.  NEGATIVE INFORMATION SIGNIFICANCE 

A tracker that uses only positive information is at a great disadvantage when given 

only line-of-bearing information. When several lines intersect at a common point, such 

as the source location in the spoke arrangement, the target distribution becomes artificially 

high near the source. Additionally, the tracker allows the distribution to expand into 

regions near the source even during periods in which no tripwires alarm in that region. 

The comparison outlined in this section highlights this disadvantage. 

Observation of the tracker displays during the simulation runs shows that the 

tracker using only positive information generates a distribution with highest likelihood at 

and around the intersection of alarming tripwires. The tracker incorporating negative 

information suppresses the target distribution at these intersections when the tripwires do 

not alarm, and the likelihood distribution is highest at alarming tripwires and in the areas 

between non-alarming tripwires. 

Figure 6 shows an example of typical tracker behavior when tripwires are arranged 

in the spoke pattern. In this example, only two tripwires have alarmed. The positive 

information tracker's distribution is higher near the intersection of the two tripwires, at 

the centrally located source. The negative information tracker considers the fact that 

several other tripwires in that area did not alarm and suppresses the distribution there, 

19 



Negative Information Tracker     Positive Information Tracker 

Mean Missed Dist:  7.115302     Mean Missed Dist: 19.243799 
AOU to include T:  G.336688     AOU to include T: 0.974135 
Prop, in 50"/ AOU:  0.680000     Prop, in 50X AOU: 0.560000 

Number of iterations:      25 

Figure 6. HexTrack display demonstrating typical Spoke pattern tracking. The negative 
information tracker suppresses the distribution where other tripwires have not alarmed, 
resulting in better localization of the target. 

causing the distribution to be properly concentrated much nearer the target. The effect 

shown in Figure 6 becomes even more pronounced as additional tripwires alarm, 

especially if the alarms are false. Typically the positive information tracker's distribution 

in these circumstances is almost exclusively in cells immediately surrounding the source 

common to the highest number of alarming tripwires. 

Table I summarizes Accuracy and Mean Missed Distance statistics for the positive 

information tracker, that used only detection information, and the negative information 

tracker, that incorporated both detection and non-detection information, for the three 

tripwire arrangements considered, at three levels of false alarm probability. 
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False 
Alarm 
Prob. 

Tripwire 
Arrangement 

Average MMD (miles) Accuracy (%) 

Negative Positive Negative Positive 

0.00 

Spoke 11.85* 20.05 98.80* 54.57 

Grid 8.76 8.58* 98.97* 81.17 

Random 19.59* 20.84 96.14* 86.55 

0.01 

Spoke 21.41* 37.30 96.91* 25.32 

Grid 18.43 17.91* 97.07* 81.11 

Random 28.78* 31.04 97.08* 61.82 

0.10 

Spoke 45.22* 63.05 97.77* 5.11 

Grid 37.30* 38.91 97.71* 83.19 

Random 45.78* 54.94 97.28* 35.12 

* denotes winner 
Table I. Tracker performance statistics for the basic target motion model. The Accuracy 
of the negative information tracker is better than the positive information tracker in every 
case.   The positive information tracker has a slightly lower MMD in only two cases, 
using the grid pattern with zero or low levels of false alarms. 

The accuracy statistics for the negative information tracker are all above 96%. 

This is an expected result of these cases, in which the assumptions exactly match actual 

target motion. Accuracy can be expected to asymptotically approach 100% as these cases 

are repeated. 

Accuracy of the positive information tracker shows extremely significant 

degradation caused by the intersection of the lines of position. The worst performance 

is with the spoke arrangement, where 42 tripwires intersect at the location of the source. 

The magnitude of the error increases at higher rates of false alarms. The grid 

arrangement is the best for the positive information tracker, as only two tripwires intersect 

at any location in this pattern. The accuracy is still significantly worse than with the 

negative information tracker. 
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The MMD statistics reflect the effect of these inaccurate distributions. In the 

spoke arrangement, the negative information tracker is significantly better than the 

positive information tracker. The negative information tracker shows slightly better 

performance in the random arrangement, increasing as the false alarm rate increases, 

causing accuracy of the positive information tracker to decrease. The only cases in which 

the positive information tracker has a lower MMD than the negative information tracker 

are the grid arrangement, with zero or low levels of false alarms. This apparent 

improvement, however, is small, and is a result of the inaccurate distribution maintained 

by the positive information tracker. Observation of HexTrack during these simulation 

runs shows that the negative information tracker frequently produces a bimodal likelihood 

distribution, centered around the last tripwire to detect the target, with the target in one 

of the two peaks. The positive information tracker does not suppress the distribution on 

the non-detecting tripwire, centering the likelihood distribution between the two most 

likely target positions. As shown in Figure 4 of Chapter III, this averaging effect can 

result in a lower MMD. 

Figure 7 shows an example of typical grid arrangement likelihood distributions. 

The negative information tracker's distribution is higher above and below the last 

(horizontal) tripwire to alarm. The effects of a previous vertical tripwire alarm are also 

seen in a right-left bimodality. The target is in one of these four high-probability regions 

surrounding the intersection of these tripwires. The positive information tracker, however, 

produces an elliptical distribution centered at the intersection of the tripwires. The 

averaging effect of the positive information tracker results in a lower Mean Missed 

Distance, but at the expense of accurately reporting the target likelihood distribution. 

Considering only the negative information tracker, the grid pattern produces the 

best tracking performance. It is important to note, however, that this comparison is made 

using comparable total length of tripwires, without regard to cost. The grid pattern's 

better performance justifies its choice in favor of the spoke pattern in a budget-limited 

implementation only if the cost of tripwires is a function of their length. 

22 



NegatLve   Information   Tracker Positive   Information   Tracker 

Mean Missed Dist: 
AOU to include T: 
Prop,   in   50X   AOU: 

5.822409 
0.305824 
0.500000 

Mean Missed Dist: 
AOU to include T: 
Prop,   in   50X   AOU: 

5.388026 
0.425467 
0.333333 

Number   of   iterations: 18 

Figure 7. HexTrack display demonstrating typical Grid pattern tracking. The positive 
information tracker produces a unimodal distribution with a low MMD; the negative 
information tracker is more accurate. 

B.  SENSITIVITY OF TRACKERS TO VELOCITY STATE 

The results in the preceding section are not significantly different if the target 

motion assumptions change to include a velocity state for the target by conditioning 

movement probabilities on the direction of movement in the previous iteration. Although 

the trackers continue to ignore target velocity when performing the motion update, the 

simulated target motion now includes a velocity state. Appendix D describes the 

incorporation of velocity in the target motion.  Table II shows the simulation results. 

The negative information tracker accuracy is not as good as when the tracker's 

assumptions match actual target motion, but accuracy is still above 92% in all cases and 

always better than the positive information tracker. All other statistics show little change 
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False 
Alarm 
Prob. 

Tripwire 
Arrangement 

Average MMD (miles) Accuracy (%) 

Negative Positive Negative Positive 

0.00 

Spoke 10.32* 18.46 93.15* 49.94 

Grid 9.27 9.03* 92.08* 76.98 

Random 17.68* 18.86 94.44* 72.18 

0.01 

Spoke 18.20* 37.28 93.46* 18.58 

Grid 19.37 18.72* 97.59* 78.75 

Random 27.11* 29.93 93.82* 59.89 

0.10 

Spoke 48.46* 55.83 94.97* 5.75 

Grid 41.00* 41.07 92.74* 77.92 

Random 47.11* 55.74 95.31* 37.81 

* denotes winner 
Table II. Tracker performance statistics for the target motion model incorporating a 
target velocity state. The negative information tracker has higher accuracy than the 
positive information tracker in every case. The positive information tracker has slightly 
lower MMD only with the grid pattern with zero or low false alarm probabilities. These 
results differ little from the cases in which target velocity state was ignored. 

from the results in Table I. These results imply that the effects of false alarms and 

tripwire arrangements are more significant than inclusion of target velocity in the tracking 

model. 

C.  SENSITIVITY OF TRACKER TO FALSE ALARM PROBABILITY 

In addition to the three levels of false alarm probability shown in the preceding 

sections, simulation runs for intermediate false alarm levels were conducted for the 

negative information tracker. In one set of runs, the tracker used the actual probability 

of false alarms for the information update to evaluate the effect false alarms have on 

tracking. In the other set of runs the tracker assumed false alarms occurred with 

probability 0.01 to evaluate the tracker's sensitivity to an inaccurate estimate of false 

alarm rate.  The results are shown in Table III and Figure 8. 
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False 
Alarm 

Probability 

Average MMD (miles) Accuracy (%) 

Tracker Uses 
Actual 

False Alarm 
Probability 

Tracker Uses 
0.01 

False Alarm 
Probability 

Tracker Uses 
Actual 

False Alarm 
Probability 

Tracker Uses 
0.01 

False Alarm 
Probability 

0.00 11.85 18.20 98.80 92.47 

0.01 21.41 21.41 96.91 96.91 

0.02 22.19 22.56 97.94 90.71 

0.03 25.46 21.63 95.80 85.88 

0.04 30.97 29.33 97.62 76.00 

0.05 33.84 27.08 98.37 71.28 

0.06 33.23 31.07 97.71 56.70 

0.07 34.97 41.96 96.76 41.50 

0.08 37.76 32.21 95.32 37.62 

0.09 42.70 39.76 96.30 32.96 

0.10 45.22 51.13 97.77 23.34 

Table HI. Performance of the negative information tracker at several false alarm 
probabilities. The MMD statistics depend more on the probability of false alarms than 
the accuracy of the estimate of this probability. Tracker accuracy, however, is 
significantly degraded by incorrect assumptions. 
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Mean Missed Distance as a Function of False Alarm Probability 

Negative Information Tracker 
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Figure 8.   MMD of negative information tracker at several false alarm probabilities. 
MMD depends more on actual false alarm probability than the accuracy of the estimate. 

Surprisingly, there is not a discernable difference in the MMD of the tracker using 

correct false alarm probabilities, and the MMD using a constant value. This suggests that 

the actual detections and false alarms are more important in determining MMD than the 

weight applied to each detection or non-detection, a function of assumed false alarm rate. 

The accuracy of the tracker incorrectly assuming a false alarm probability of 0.01, 

however, shows that the incorrect assumption produces distributions that are increasingly 

inaccurate as the magnitude of the error increases. Figure 9 shows the effects of the 

improper assumptions. 

When there are no false alarms but the tracker assumes that there are, it does not 

give enough weight to the alarming tripwires. Although each alarm, actually a detection, 

should limit the likelihood distribution exclusively to the area covered by the detecting 
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Accuracy Plots for Various False Alarm  Probabilities 
Negative Information Tracker - Using 0.01   False Alarm Probability 
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Figure 9. Accuracy of the negative information tracker at several false alarm 
probabilities. Underestimating false alarm probability produces a pessimistic distribution; 
overestimating produces an optimistic distribution. 

tripwire, the assumed possibility that the detection is false allows some of the distribution 

to remain away from the detecting tripwire. The probability density of the likelihood 

distribution in cells near the detecting tripwire is lower than it should be, but is still 

higher than surrounding areas. A lower probability AOU contains the target, at the 

detecting tripwire. The result is a pessimistic distribution; the tracker has better 

localization of the target than it indicates. 

When there are more false alarms than assumed, too much weight is given to 

tripwire alarms, that are also more distributed. The tracker generates a distribution 

peaked higher at alarming tripwires than is appropriate, requiring larger AOUs to contain 

a target not near an alarming tripwire. This produces a distribution that is too optimistic. 
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In an actual implementation of a tripwire field, the rate of false alarms (in the 

absence of a target) is measurable, so estimation errors are expected to be small. The 

results of this section show that the actual rate of false alarms are more significant than 

inaccurate estimation of the false alarm probability. 
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V.  OPTIMAL ARRANGEMENT OF A TRIPWIRE FIELD 

The results of Chapter IV demonstrate that HexTrack's negative information 

tracker produces accurate distributions. This chapter discusses arrangement of a field of 

tripwires in an optimal cost-effective sense using MMD as a measure of (in-) 

effectiveness. 

There are an infinite number of ways of arranging a field of tripwires. The three 

arrangements considered in Chapter IV were based on specific features of the many 

possible arrangements. Although the cost of an array of tripwires is uncertain, tripwire 

sources cost an estimated 10 to 100 times as much as receivers. This chapter uses a 

factor of 10 throughout. 

The spoke pattern, shown in Figure 12 of Appendix A, is based on source-receiver 

tripwires, taking advantage of the cost savings available when using multiple receivers per 

source and multiple sources per receiver. The next section introduces a similar pattern 

based on many receivers arranged around each source, called the circle pattern. 

The grid pattern, shown in Figure 13 of Appendix A, minimizes the size of areas 

between tripwires, reducing the distance the target travels between successive detections. 

This pattern is only practical if the cost of each tripwire is primarily a function of length, 

or if sources can not form tripwires with multiple receivers. Using the source-receiver 

tripwires, however, the grid pattern becomes prohibitively expensive and wasteful. 

The grid pattern shown in Figure 13 costs almost seven times as much as the 

spoke pattern. The spoke pattern, if repeated over a large area, uses 20 receivers per 

source. Note that this pattern forms 42 tripwires per source by allowing receivers on the 

edges of the hexagonal pattern to form tripwires with two sources, and receivers on the 

corners to form tripwires with three sources. The hexagonal area covered by one source, 

and its associated tripwires, is 6495 square miles. Using the cost of a receiver as one 

unit, and assuming sources are ten times more expensive than receivers, each set of 42 

tripwires costs 30 units (an average cost of 0.71 units per tripwire). The coverage 

available per cost unit is 216.5 square miles. To cover the 22,500 square mile area costs 
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104 cost units. In contrast, the grid pattern that has the same cumulative length of 

tripwires as the spoke pattern employs 66 sources and receivers (see Figure 13 in 

Appendix A) at a cost of 726 units. 

Using the grid pattern at the same cost as the spoke pattern greatly reduces the 

number of tripwires available and results in large gaps in coverage. If a grid-type pattern 

is desired at the same 104 unit cost (per 22,500 square miles) as the spoke pattern, the 

104 cost units would purchase an average of 9.5 sources and receivers. If arranged in an 

alternating pattern along each axis, these sources and receivers would form only 19 

tripwires. Since spanning the search area in each direction requires three tripwires, the 

resulting pattern would have an average of 3.2 grid lines each 150 miles, leaving squares 

47 miles on each side. It is not necessary to perform simulation runs to observe that such 

a pattern would result in poor tracking performance (in terms of MMD). 

The random arrangement, shown in Figure 14 of Appendix A is used to provide 

comparison with previous models of tracking performance. Observation of HexTrack's 

trackers with this arrangement also permits qualitative analysis of tracker performance 

under various conditions, such as intersecting tripwires or gaps in coverage. The random 

arrangement, using only one source for each receiver, is the costliest arrangement and 

does not represent a practical method of distributing tripwires. 

A pattern similar to the spoke pattern, with many receivers per source, is clearly 

cost-effective. There are other variables in this type of pattern, however. The following 

sections discuss variation of the distance between sources, at constant cost, and variation 

of the number of receivers per source. 

A.  PROXIMITY OF SOURCES 

The spoke pattern is based on locating sources exactly close enough to each other 

such that every point in the search area is within 50 miles (the assumed maximum 

tripwire length) of a source. The spoke pattern is a refined version of a pattern called the 

circle pattern.  The circle pattern is constructed by arranging receivers around a source 
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at equal intervals on a circle with radius 50 miles. All source-receiver pairs that are 

within 50 miles of each other form tripwires. 

The figures in Appendix B show the circle pattern with sources placed at 

increasingly large distances from each other. The pattern is more evident viewing Figures 

26 through 35 first, followed by Figure 25 and previous figures. The pattern shown in 

Figure 23 has 20 receivers around each source, with sources arranged at precisely the 

same distance from each other as in the spoke pattern. Note that more than 20 tripwires 

are associated with each source, as receivers around other sources are within the 50 mile 

radius. This pattern is essentially a rearrangement of the same number of sources used 

in the spoke pattern. 

To evaluate the effect of overlapping coverage by moving sources closer, and of 

leaving gaps in the coverage by moving sources apart, several additional circle patterns 

were generated. Using the proximity of sources to each other in the spoke pattern as a 

reference point of 1.0, the number of receivers per source for other proximities is 

calculated assuming constant total cost, and a repeating pattern over a large area. As the 

sources become closer together, more are necessary to cover an equivalent search area, 

so fewer receivers can be purchased. Having receivers from other sources close enough 

to form tripwires partially mitigates this reduction in receivers. As sources are moved 

apart, the savings from fewer sources allow the purchase of more receivers per source. 

However, each receiver is only within range of one source. Appendix B shows the 

tripwires formed at each level of proximity. Note that all of the circle patterns cost the 

same as the spoke pattern. 

Figure 10 and Table IV show the effect of varying source proximity. Relative 

Proximity represents the factor of overlapping (Relative Proximity less than 1.0) or 

gapping (Relative Proximity greater than 1.0) coverage. The pattern with proximity 1.0 

has 20 receivers per source and has sources arranged exactly far enough that every point 

in the search area is within the maximum tripwire length. False alarms occur at a 

probability of 0.01 per tripwire per iteration. 
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Mean Missed  Distance as a  Function of Source Proximity 
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Figure 10. MMD of the negative information tracker as a function of source proximity 
in the circle pattern. Moving sources together allows overlapping coverage, but results 
in fewer receivers and some shorter tripwires. Moving sources apart permits more 
receivers, but causes gaps in coverage. 
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Relative 
Proximity 

Receivers 
per Source 

Average MMD 
(miles) 

0.60 1 69.78 

0.65 3 62.83 

0.70 5 42.26 

0.75 7 47.87 

0.80 9 29.91 

0.85 12 25.78 

0.90 14 29.17 

0.95 17 27.16 

1.00 20 22.54 

1.05 23 24.02 

1.10 26 29.93 

1.15 30 27.94 

1.20 33 34.15 

1.25 37 31.66 

1.30 41 32.74 

1.35 45 30.93 

1.40 49 34.84 

1.45 53 34.44 

1.50 57 35.05 

1.55 62 40.74 

1.60 67 37.15 

Table IV. MMD of the negative information tracker as 
a function of source proximity in the circle pattern. 
The lowest MMD is at a Relative Proximity of 1.0, 
where sources are at the same proximity as the spoke 
pattern. 
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At the low extreme, the cost of the additional sources drastically reduces the 

number of receivers per source, resulting in few tripwires and large areas of uncertainty. 

As the receiver-per-source ratio increases, MMD rapidly decreases as more tripwires 

form. As gaps in coverage appear and receivers begin to be in range of only one source, 

MMD increases sharply until all receivers are associated with only one source. Increasing 

gaps in coverage cause the remaining increase in MMD, although the increased number 

of receivers per source mitigates the increase. Figure 10 indicates that proximities near 

1.0 are the lowest. The optimal circle pattern MMD of 22.54 miles is also comparable 

with the MMD of the same-cost spoke pattern under otherwise identical assumptions, 

21.41 miles. 

B.  DENSITY OF TRIPWIRE FIELD 

Concluding from the previous section that the spoke pattern is a near-optimal 

arrangement, this section considers the marginal benefit of additional receivers. The 

number of tripwires per source in the spoke arrangement was varied from six to 60. 

Figure 11 and Table V show the results of this analysis. 

These patterns are not constant cost; they use the same number of sources in the 

same location, while varying the receiver-per-source ratio to produce more tripwires. For 

example, the 12 tripwire-per-source pattern costs half as much as the 42 

tripwire-per-source spoke pattern used in Chapter IV. A ten to one ratio of source to 

receiver cost is assumed. 

Significant improvement in tracker performance is evident up to about 30 tripwires 

per source, with smaller marginal improvement from addition of further tripwires. 

Evaluation of the tactical requirements and value of added effectiveness is necessary to 

state an optimal cost-effective value, but the results suggest a minimum of 30 tripwires 

per source to take advantage of the significant improvement in performance. 
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Mean  Missed Distance as a Function of Tripwire Density 

Negative Information Tracker 
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Figure 11. MMD of the negative information tracker as a function of tripwire density 
in the spoke pattern. Significant improvement occurs up to 30 tripwires per source; 
marginal improvement occurs at higher numbers. 
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Tripwires 
per Source 

Receivers 
per Source 

Cost Relative to 
Spoke Pattern 

Mean Missed Distance 
(miles) 

6 2 0.4 66.10 

12 5 0.5 51.52 

18 8 0.6 45.41 

24 11 0.7 34.87 

30 14 0.8 23.92 

36 17 0.9 21.76 

42 20 1.0 21.41 

48 23 1.1 17.14 

54 26 1.2 14.49 

60 29 1.3 14.37 

Table V. MMD of the negative information tracker as a function of tripwire density in 
the spoke pattern. Significant improvement occurs up to 30 tripwires per source; marginal 
improvement occurs at higher numbers. 
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VI.  CONCLUSIONS 

A. SIGNIFICANCE OF NEGATIVE INFORMATION 

Fusion of negative information into a tracking algorithm can significantly enhance 

its performance. The effect is most distinct in arrangements of line-of-position sensors 

that share a common point, and in situations where false alarms produce a large number 

of detections. In the case of forward scatter arrays, where cost-effective arrangements of 

tripwires have coincident endpoints, fusion of negative information into the target motion 

analysis is necessary to produce accurate results. 

Implementation of tracking using negative information requires estimates of the 

probabilities of target detection as well as false alarms. While improper assumptions 

degrade tracker performance, the effect of these assumptions is less significant than 

choosing not to take negative information into account. 

B. TRIPWIRE ARRANGEMENT 

In a source-receiver implementation of tripwires, practical implementation of an 

array of tripwires would involve placement of many receivers around each source. 

Constant-cost analysis of the effects of leaving gaps in, or overlapping, coverage, shows 

that arrangement of the sources just far enough apart to provide complete coverage results 

in the best localization of the target. The spoke arrangement implements this coverage 

plan while also using multiple sources per receiver. 

Addition of tripwires can continually enhance the performance of a field of 

tripwires. There appears to be a minimum number of tripwires needed to provide 

adequate tracking capability, with further additions marginally improving performance. 

C. SUGGESTIONS FOR FURTHER RESEARCH 

This thesis makes several simplifying assumptions that warrant further analysis to 

extend the results to a wider range of real-world problems. One significant assumption 

is that of a single target in the search area.   Further analysis could develop MOEs and 
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analyze the significance of negative information in a no-target or multiple target 

environment. 

The trackers in this thesis did not include a velocity state for the target because 

of programming constraints in the microcomputer implementation. Although analysis 

shows this effect to be small, further study into how a negative information tracking 

analysis can include target velocity state could provide additional useful results. 

Finally, this thesis analyzed a specific sensor, the forward scatter tripwire. The 

significance of negative information for other types of sensors is not obvious. A model 

fusing both positive and negative information from multiple sensors of varying types can 

extend the results of this thesis to many tracking scenarios. 
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APPENDIX A.  CONSTANT CUMULATIVE LENGTH TRIPWIRE PATTERNS 

Figure 12.  Spoke tripwire pattern. 

Figure 13.  Grid tripwire pattern. 
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Figure 14.  Random tripwire pattern. 
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APPENDIX B.  VARIABLE SOURCE PROXIMITY TRIPWIRE PATTERNS 

Figure 15.  0.60 Relative Proximity Circle pattern. 

Figure 16.  0.65 Relative Proximity Circle pattern. 

Figure 17.  0.70 Relative Proximity Circle pattern. 
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Figure 18.  0.75 Relative Proximity Circle pattern. 

Figure 19.  0.80 Relative Proximity Circle pattern. 

Figure 20.  0.85 Relative Proximity Circle pattern. 
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Figure 21.  0.90 Relative Proximity Circle pattern. 
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Figure 22.  0.95 Relative Proximity Circle pattern. 
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Figure 23.   1.00 Relative Proximity Circle pattern. 
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Figure 24.   1.05 Relative Proximity Circle pattern. 
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Figure 25.   1.10 Relative Proximity Circle pattern. 
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Figure 26.   1.15 Relative Proximity Circle pattern. 
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Figure 27.   1.20 Relative Proximity Circle pattern. 

**   s^s/flx 

l^äü 

SB 
w$^ ̂ ifffe 

Figure 28.   1.25 Relative Proximity Circle pattern. 
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Figure 29.   1.30 Relative Proximity Circle pattern. 
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Figure 30.   1.35 Relative Proximity Circle pattern. 

Figure 31.   1.40 Relative Proximity Circle pattern. 

Figure 32.   1.45 Relative Proximity Circle pattern. 
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Figure 33.   1.50 Relative Proximity Circle pattern. 
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Figure 34.   1.55 Relative Proximity Circle pattern. 
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Figure 35.   1.60 Relative Proximity Circle pattern. 

47 



48 



APPENDIX C.  VARIABLE DENSITY SPOKE TRIPWIRE PATTERNS 

Figure 36.   Six Tripwire per Source Spoke pattern. 

Figure 37.   12 Tripwire per Source Spoke pattern. 

Figure 38.   18 Tripwire per Source Spoke pattern. 
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Figure 40.  30 Tripwire per Source Spoke pattern. 

Figure 41.   36 Tripwire per Source Spoke pattern. 

50 



Figure 42.  42 Tripwire per Source Spoke pattern. 

Figure 43.  48 Tripwire per Source Spoke pattern. 

Figure 44.  54 Tripwire per Source Spoke pattern. 

51 



Figure 45.   60 Tripwire per Source Spoke pattern. 
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APPENDIX D.  HEXTRACK TARGET MOTION ASSUMPTIONS 

The target motion model used by HexTrack is a discretization of a stochastic target 

motion model, programmed in another program called HexMotion. The target is assumed 

to execute maneuvers randomly according to a Poisson process, with a rate of three 

maneuvers per hour. When a maneuver occurs, the target chooses a new course 

(uniformly from 0° to 360°) and a new speed V where V=5 with probability 0.4, V=10 

with probability 0.3, and 7=15 with probability 0.3. 

HexMotion initializes the target in the center of a cell, and calculates the target's 

position every 7.06 minutes, corresponding to the discrete tracking intervals in HexTrack. 

Each interval, HexMotion determines whether the target remains in the same cell, or 

enters one of the adjacent cells. This process repeats for 15 million iterations to produce 

an empirical probability distribution for target motion. Both unconditional probabilities 

and probabilities conditioned on a change of cell in the previous iteration are calculated. 

HexMotion implements the following pseudo-code algorithm: 

initialize target position and number of iterations; 
generate random course and speed; 
generate time-to-maneuver (exponential random variable); 
time-to-iteration <— 7.06 minutes; 

while iterations < 15 million do 
if time-to-maneuver < time-to-iteration then 

calculate new target position at maneuver time; 
generate new random course and speed; 
decrement time-to-iteration by time-to-maneuver; 
generate new time-to-maneuver (exponential random variable); 

else 
calculate new target position at end of iteration; 
determine and record change of cell since last iteration; 
decrement time-to-maneuver by time-to-iteration; 
time-to-iteration <— 7.06 minutes; 
increment iterations; 

end if; 
end while; 
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Figure 46 shows the numbering of the cells used in Table VI. Table VI shows the 

probabilities of movement to adjacent cells conditioned on movement in the previous 

iteration. HexTrack uses these empirical probabilities in its target motion model along 

with the velocity state. Table VI also shows the unconditional probabilities of movement 

to adjacent cells. HexTrack uses these in its basic motion model and the tracker motion 

update.  The HexMotion results for symmetric entries are averaged. 

Figure 46. Adjacent cell numbering 
used in target motion matrix. Cell n is 
symmetric with cell 1-n. 
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Conditional Target Cell Change This Iteration: Cell 0 to .. 
Probabilities 

0 1 2 3 4 5 6 

Target 
Cell 

Change 
Previous 
Iteration: 

CellO 
to ... 

0 .3922 .1013 .1013 .1013 .1013 .1013 .1013 

1 .4316 .1485 .1419 .1419 .0503 .0503 .0355 

2 .4316 .1419 .1485 .0503 .1419 .0355 .0503 

3 .4316 .1419 .0503 .1485 .0355 .1419 .0503 

4 .4316 .0503 .1419 .0355 .1485 .0503 .1419 

5 .4316 .0503 .0355 .1419 .0503 .1485 .1419 

6 .4316 .0355 .0503 .0503 .1419 .1419 .1485 

Unconditional 
Probabilities 

Target Cell Chanj ge Every 1 te ration: Cell 0 to . .. 

0 1 2 3 4 5 6 

.4150 .0975 .0975 .0975 .0975 .0975 .0975 

Table VI. Target motion probabilities used in the HexTrack motion model. Conditional 
probabilities incorporate the target's velocity, represented by change of cell, on the 
previous iteration. For example, if the target traveled left one cell (from 0 to 3) on the 
previous iteration, it will move to the next cell to the left (from 0 to 3) this iteration with 
probability 0.1485. If velocity state is ignored, the target travels one cell to the left with 
probability 0.0975. 
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APPENDIX E. HEXTRACK SOURCE CODE 

program HexTrack; 
{Author:   Daniel  B.   Wlddls} 

{$N+  enable  80x87 mode  for double-precision reals} 

uses Graph,CRT; 

type 
MotionArray = Array[0..7, 0..6] of single; 

{tripwire  data  files} 

const 
BGIdir = '\tp\bgi'; {location  of BGI files} 
TWFNameS = '\tp\tripwire\spoktrip.dat', 
TWFNameR = '\tp\tripwire\randtrip.dat', 
TWPNameG = '\tp\tripwire\gridtrip.dat', 
TWFNameP = '\tp\tripwire\proxtrip.dat' 

{this  Is a  state  transition matrix for target velocity.     Velocity states 
are:        1       2 

3     0     4 
5       6       .     unconditionals  are  overall proportion  of  time  In  states.} 

TMotion: MotionArray = 
{Conditional:   Vel oc. ity State} 
{   0                    1 2 3 4 5 6     } 

/"0)((0.3922 , 0.1013 / 0 1013 / 0.1013 / 0 1013 / 0 1013 / 0.1013), 

{1} (0.4316 , 0.1485 , 0 1419 / 0.1419 1 0 0503 r 0 0503 / 0.0355), 

{2} (0.4316 , 0.1419 / 0 1485 / 0.0503 r 0 1419 i 0 0355 / 0.0503), 

{3} (0.4316 , 0.1419 , 0 0503 / 0.1485 i 0 0355 i 0 1419 / 0.0503), 

{4} (0.4316 , 0.0503 / 0 1419 / 0.0355 i 0 1485 i 0 0503 , 0.1419), 
{5} (0.4316 , 0.0503 i 0 0355 / 0.1419 t 0 0503 i 0 .1485 / 0.1419), 

{6} (0.4316 , 0.0355 
{unconditional} 

i 0 0503 / 0.0503 t 0 1419 i 0 1419 / 0.1485), 

(0.4150 , 0.0975 , 0 0975 , 0.0975 i 0 .0975 , 0 .0975 / 0.0975)); 

{this  constant  determines detection probability of a single  tripwire 
In a  single  Iteration  for a  target  within  Its  detection region} 

DetectProb = 0.8; 

{these  constants are used for statistical  data  collection} 
Iterations = 50; 
Replications = 60; 
StopTime = Iterations*Replications; 

(these  constants define  size  of hex grid} 
GridSize = 150; {miles,   each dimension} 
YCells = 85; {max:85  due to heap overflows} 
XCells = Round(YCells*0.866025404); {85*cos(Pl/6)   =   74} 
Cells = XCells*YCells; {85*74   = 6290} 

Radius = (GridSize*2/3)/(YCells+0.5); {miles,   from center of hex 
to each corner} 

Scale  = 312/((XCells+0.5)*1.732050808); {pixels per hex} 

MaxTW = 250;    {max number of tripwires   (actual number from TWFlle)} 

type 
(This  type  Is for TWArray,   used to calculate detection probabilities 
for each cell-trlpwlre  combination} 

TWPtr = ATWRecord; 
TWRecord = record 

XI, Yl, X2, Y2 : single; {tripwire  endpolnts} 
end; {record} 

TWArrayType = Array[1..MaxTW] of TWPtr; 
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{This  type  Is for TWllst,   a part  of each  CellRecord,   a linked list  of 
tripwires   'Incident'   (close  enough  for nonzero detection probability) 
to  each  cell} 

IncTWPtr = AIncTWRecord; 
IncTWRecord = record 

TWNum : Integer; 
AlmProb : double; 

Next : IncTWPtr; 
end; {record} 

{Incident   tripwire} 
{probability of detection 

OR  false alarm} 
{next  Incident  one} 

{This  type Is  for CellArray} 
CellPtr = ACellRecord; 
CellRecord = record 

CellX, 
CellY : single; 

Ndensity, 

Pdensity, 

Temp, 
NAP double; 

TWllst : IncTWPtr; 

{cell  center,   used for detection 
probability calcs and missed dlst.} 

(target distribution density with 
negative Information considered} 

{target distribution density without 
negative  Information  considered} 

{for Nd,   Pd calculations} 
{probability no  tripwires alarm 
given  target  In  this cell} 
{list  of TWs Incident  to cell} 

{Note:   Sort  vars  Index other cells: 
CellArray[1]*.NSort  Indexes  cell  with highest 
Ndensity   (similar for PSort)} 

NSort, {for AOU calcs  of Ndensity} 
PSort  : Integer; {for AOU calcs  of Pdensity} 

end; {record} 

CellArrayType = Array[l..Cells] of CellPtr; 
AdjCellType = Array[1..6] of Integer; {used for movement  update; 
HexType = Array[1..12] of Integer;    {used to draw hexes  on  screen} 

CellArray : CellArrayType; 
TWArray : TWArrayType; 
AdjCells : AdjCellType; 

TargetC, 
Check, 
NumTW, 
X, Y, C, 
NextMatch, 
TC, HeapSlze Integer; 

LastMove, 
Color : Byte; 

Dlst, 
TWLen, Proj, 
Prob, RadEq s 
FalseProb, 

single; 

FalseProbAssumed, 
NTotalProb, 
PTotalProb : double; 

{list  of adjacent  cell  numbers   (temp)} 

{'real'   target  cell} 
{file  Input  line  check} 
{number of TW's  read In} 

{counting variables} 

{velocity state} 
{used for graphical  display of likelihood 
distributions} 

(for tripwire detection calcs} 
{false alarm probability of a  single 
tripwire  In  a single  Iteration} 

{false alarm probability used in  tracker} 

{for normallzing/AOU size  calcs} 

NMMD, 
PMMD, 
NContain, 
PContain 
NIn5 0AOU, 
PIn50AOU, 

single; 

{Mean missed distance} 

{Prob In  this  or higher prob cell} 

{Iterations  target  contained In 509s 
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SimTime : Integer; 

TempPtr, 
TempPtr2 : IncTWPtr; 
Alarmed, 
Searching : Boolean; 

SimFile, 
TWPile : Text; 

containment  region} 
{Total  elapsed Iterations} 

{for Incident  TW Incrementing} 
{for other cells  Incident  to TW} 
{boolean  If TW alarms} 
{when  TW found In  list} 

{stats  output} 
{stores  tripwire pattern} 

SimFName, 
TWFName, 
S 
PolyPoints 
GraphicsOn 
InitStatus 
CH : CHAR; 

STRING; 
HexType; 
BOOLEAN; 
Integer; 

fselecfced tripwire field} 
{for graphic  text output.? 
{for FlllPoly procedure} 
(toggle display of densities} 
{temp variable  to watch progress} 

GRAPHICS  INITIALIZATION 

procedure InitGraphics; 
{Initializes graphics mode;   returns  error If not  successful.} 
{This procedure from D.   Cooper,  _0h!   Pascal!_  1992,   p.   111.} 

var GraphDriver, 
GraphMode:  Integer; 

begin {InitGraphics} 
GraphDriver := Detect; 
InitGraph (GraphDriver, GraphMode, BGIdir); 

end; {InitGraphics} 

BINARY HEAP  SORTING ROUTINES 

{  The Heaplfy and HeapExtractMax routines are  used in a binary heapsort 
routine.     In  the heapsort,   CellArray begins with NSort and PSort 
referencing cells  sorted by the values  of NDenslty or PDenslty on  the 
previous  Iteration.     To  update  this  sort,   the binary parents are heaplfled 
from  the bottom  to  the  top of  the heap,   placing lower NDenslty and PDenslty 
at the top.     The HeapExtractMax routine  is  then  called  to  sequentially 
remove  the lowest value and place it  at  the  end of the list,   reducing the 
size of the remaining heap.     The resulting array Is  sorted such  that 
CellArray [CellArray [1]A .NSort]* .NDenslty is  the highest  density.} 

procedure NHeapify(var CellArray: CellArrayType; i : integer); 
{Maintains binary heapsort property for 1  and its  children. 
Assumes   'children'   of 1 have heap property.} 

L, 
R, 
M, 
Temp integer; 

begin {NHeaplfy} 
L := i SHL 1; {21} 
R := (i SHL 1) OR 1;   {21+1} 
if L <= Heapsize then begin {if I is  leaf. exit} 

M := L; 
if R <= Heapsize then begin 

if CellArray[CellArray[L]A.NSort]A.Ndensity > 
CellArray[CellArray[R]A.NSort]A.Ndensity then begin 

M := R; 
end; (if L  < R} 

end; {If R  <= Heapsize} 
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if CellArray[CellArray[M]A.NSort]A.Ndensity < 
CellArray[CellArray[i]A.NSort]A.Ndensity then begin 

Temp := CellArray[i]A.Nsort; 
CellArray[i]A.NSort := CellArray[M]A.NSort; 
CellArray[M]A.NSort := Temp; 
NHeapify(CellArray,M); 

end; {If M >  1} 
end; {if L  <= Heapsize} 

end; {NHeaplfy} 
( ; 
function NHeapExtractMax(var CellArray : CellArrayType) : INTEGER; 
{returns  cell  at   top  of heap;   updates heap} 

begin {HeapExtractMax} 
NHeapExtractMax := CellArray[1]A.NSort; 
CellArray[1]A.NSort := CellArray[HeapSize]A.NSort; 
Dec(HeapSize); 
NHeapify(CellArray,1); 

end; {HeapExtractMax} 
{ ; 
procedure PHeapify(var CellArray: CellArrayType; i : integer); 
{Maintains binary heapsort property for 1  and Its  children. 
Assumes   'children'  of 1 have heap property.} 

var 
L, 
R, 
M, 
Temp : integer; 

begin {PHeaplfy} 
L := i SHL 1; {21} 
R := (i SHL 1)-0R 1;    {21+1} 
if L <= Heapsize then begin {If I Is  leaf,   exit} 

M := L; 
if R <= Heapsize then begin 

if CellArray[CellArray[L]A.PSort]A.Pdensity > 
CellArray[CellArray[R]A.PSort]A.Pdensity then begin 

M := R; 
end; {If L  < R} 

end; {If R  <= Heapsize} 
if CellArray[CellArray[M]A.PSort]A.Pdensity < 

CellArray[CellArray[i]A.PSort]A.Pdensity then begin 
Temp := CellArray[i]A.PSort; 
CellArray[i]A.PSort := CellArray[M]A.PSort; 
CellArray[M]A.PSort := Temp; 
PHeapify(CellArray,M); 

end; {If M >  1} 
end; {If L  <= Heapsize} 

end; {PHeaplfy} 
{ ; 
function PHeapExtractMax(var CellArray : CellArrayType) : INTEGER; 
{returns cell  at  top of heap;   updates heap} 

begin {HeapExtractMax} 
PHeapExtractMax := CellArray[1]A.PSort; 
CellArray[1]A.PSort := CellArray[HeapSize]A.PSort; 
Dec(HeapSize); 
PHeaplfy(CellArray,1); 

end; {HeapExtractMax} 

, —-; 
{ MAIN PROGRAM > 
( } 

begin 
{Reseed Random Number Generator} 
Randomize; 
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Clrscr; 
Writeln('Enter choice of: 
WritelnC Tripwire Field 
Writeln(' 
WritelnC 
Writeln(' 
WritelnC 
readln(S 
S[l] 
S[2] 
S[3] 
CH := 'N'; 
case S[l] of 

[S]poke 
[R]andom 
[G]rid 
[P]roximity 

UpCase(S[l]); 
UpCase(S[2]); 
UpCase(S[3]); 

); 
Motion Model 

[N]o Velocity State 
[V]eloclty State 

A Level' ); 
[Z]ero = 0 00 ); 
[L]ow = 0 01 ); 
[H]igh = 0 10' ); 
0.0[0] . . 0.10[A] 

TWFNameS; 
'Enter number of spokes 

[1] through 1[0]'); 

CH; 

per sextant: ') 

= TWFNameP; 
Enter relative proximity Of sources 

[S] =0 6 . . [Z] = 0 95 '); 
[0] =1 0 . . [9] = 1 45 '); 
[A] =1 5 . . [C] = 1 6 ' ); 

'S' : begin 
TWFName 
Writeln(' 
WritelnC 
readln(CH); 
TWFName[17] 

end; {'S'} 
'R' : TWFName := TWFNameR; 
'G' : TWFName := TWFNameG; 
' P' : begin 

TWFName 
Writeln('Enter relative proximity of sources:'); 
WritelnC' 
WritelnC' 
WritelnC' 
readln(CH); 
TWFName[17] := CH; 

end; f'P'J 
else begin 

WritelnC'Invalid Response'); 
Halt ; 

end; {else} 
end; {case} 
if S[2] = 'N' then 

for C := 0 to 6 do 
for TC := 0 to 6 do 

{make  all   transition matrix entries  independent  of current 
velocity state} 

TMotion[C,TC] := TMotion[7,TC] ; 
FalseProbAssumed := 0.01; 
case S[3] of 

'Z' : begin 
FalseProb := 0.0; 
FalseProbAssumed 

end; {'Z'} 
'L' : FalseProb := 0.01; 
'H' : begin 

FalseProb := 0.1; 
FalseProbAssumed 

end; i'Z'} 

0.0; 

0.1; 

'0' FalseProb = 0 0; 
'1' FalseProb = 0 01 
'2' FalseProb = 0 02 
'3' FalseProb = 0 03 
'4' FalseProb = 0 04 
'5' FalseProb = 0 05 
'6' FalseProb = 0 06 
'7' FalseProb = 0 07 
'8' FalseProb = 0 08 
'9' FalseProb = 0 09 
'A' FalseProb = 0 1; 
else begin 

WritelnC'Invalid Response'); 
Halt ; 
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end; {else} 
end; (case} 
if CH <> 'N' then begin    {SlmFlle  stores  statistical   Information} 

if S[l] = 'S' then 
SimFName := '\tp\tripwire\simoutD'+CH+'.'+S 

else 
SimFName := '\tp\tripwire\simoutP'+CH+'.'+ S; 

end {If} 
else 

SimFName := '\tp\tripwire\simout.'+S; 

Clrscr; 
Writeln('Initializing detection probabilities...please wait...'); 
InitStatus := 0; 

{Load TW's  from file} 
Assign(TWFile,TWFName); 
Reset(TWFile); 
{TWFile has  one  line for each  tripwire  In  the following- format: 

SourceX        SourceY        RecelverX        RecelverY 99       } 
NumTW := 1; 
while (NumTW <= MaxTW) and (not EOF(TWFile)) do begin 

NEW(TWArray[NumTW]); 
with TWArray[NumTW]A do begin 

readln(TWFile,XI,Y1,X2,Y2,Check); 
end; {with} 
if Check =99 then 

Inc(NumTW); 
end; {while} 
Dec(NumTW); 
Close(TWFile); 

{Open output  file} 
Assign(SimFile,SimFName); 
Rewrite(SimFlle); 
writeln(SimFile, 
'Negative Information Tracker  Positive Information Tracker'); 
writein(SimFlle, 

MMD       CDF MMD       CDF'); 
Close(SimFile); 

{Initialize  CellArray} 
for C := 1 to Cells do begin 

X := (C-l) mod XCells + 1; 
Y := (C-l) div XCells + 1; 
NEW(CellArray[C]); 
with CellArray[C]A do begin 

{calculate  center of cell} 
if Y mod 2=0 then 

CellX := (X-l/2) * 1.7320508*Radius 
else 

CellX :=   X   * 1.7320508*Radius; 
CellY    := (Y-l/3) * 1.5*Radius; 
{■assume target distributed uniformly} 
Ndensity := 1.0/Cells; 
Pdensity := 1.0/Cells; 
{initialize other variables} 
NAP := 1.0; 
TWList := nil; 
NSort := C; 
PSort := C; 

end; {with} 
end; {for} 

{Initialize  Target Position and Velocity} 
{assume  target  distributed uniformly} 
TargetC := Trunc(l + Random*Cells); 
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LastMove := Trunc(7*Random) mod 7; 

(Initialize Negative probabilities} 
for TC := 1 to NumTW do begin 

with TWArray[TC]A do begin 
for C := 1 to Cells do begin 

with CellArray[C]A do begin 
{ensure  forward scattered detection   (>  90  degrees)} 
if (Xl-CellX)*(X2-CellX) + 

(Yl-CellY)*(Y2-CellY) < 0.0 then begin 
{calculate denominator  to avoid divide by zero} 
TWLen := Sqrt(((X2-X1)*(X2-X1) + (Y2-Y1)*(Y2-Y1))); 
if TWLen > 0.0 then begin 

{calculate projection onto  tripwire} 
Proj := ((X2-Xl)*(CellX-Xl) + (Y2-Y1)*(CellY-Yl))/TWLen; 
{calculate distance from tripwire} 
Dist := ((CellX-Xl)*(CellX-Xl) + 

(CellY-Yl)*(CellY-Yl) - 
(Proj*Proj)); 

faccount for small negative numbers as a result  of 
floating-point round-off error} 

if Dist <= 0.0 then Dist := 0.0 
else Dist := Sqrt(Dist); 

{calculate  width  of square with  same  center as  cell, 
equal  area} 

RadEq := Sqrt(Radius*Radius*(3/8)*Sqrt(3)); 
{calculate proportion of this  square within one mile 
of tripwire} 

If  Dist < 1 - RadEq then 
{entire  square within  1  of TW} 
Prob := DetectProb 

else 
{part  of square  Is  outside  1   of TW} 
Prob := DetectProb*(RadEq + 1 - Dist)/(2*RadEq); 

if Prob > 0.0 then begin 
{add  this  TW to  list  for  this  cell} 
TempPtr := TWList; 
NEW(TWList); 
with TWListA do begin 

TWNum := TC; 
AlmProb := 1.0 - (1.0-Prob)*(1.0-PalseProbAssumed); 
NAP := NAP * (1.0 - AlmProb); 
Next := TempPtr; 

end; {with} 
end {If} 
else begin 

NAP := NAP * (1.0 - FalseProbAssumed); 
{If Prob  <=   0.0  then AlmProb   := FalseProbAssumed. 
This number Is not  assigned to a variable 
to  conserve memory} 

end; {else} 
end {If} 
else begin 

NAP := NAP * (1.0 - FalseProbAssumed); 
end; {else} 

end {If} 
else begin 

NAP := NAP * (1.0 - FalseProbAssumed); 
end; {else} 

end; {with} 
end; {for} 
Inc(InitStatus) ; 
GotoXY(l,2); 
writeln(100*InitStatus/NumTW:5:1,' %   '); 

end; {with} 
end; {for} 
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InitGraphics; 
GraphicsOn := TRUE; 
SetTextStyle(SmallFont,HorizDir,6); 
SetTextJustify(CenterText,TopText); 
OutTextXY(160,0,'Negative Information Tracker'); 
OutTextXY(480,0,'Positive Information Tracker'); 
{Set  graph palette  colors} 
SetPalette(l,56) 
SetPalette(2,24) 
SetPalette(3,16) 
SetPalette(4,10) 
SetPalette(5,34) 
SetPalette(6,26) 
SetPalette(7,58) 
SetPalette(8,30) 
SetPalette(9,62) 

{Dark gray} 

{Dark green} 

{In between} 

{Bright yellow} 

{Main  operating loop} 
SimTime := 0; 
while SimTime < StopTime do begin; 

Inc(SimTime); 

{If at  end of iterations,   re-randomize  target} 
if (SimTime mod Iterations) = 1 then begin 

{Initialize  Target Position and Velocity} 
TargetC := Truncd + Random*Cells); 
LastMove := Trunc(7»Random) mod 7; 
{Initialize  Target Distribution} 
for C := 1 to Cells do begin 

with CellArray[C]A do begin 
Ndenslty := 1.0/Cells; 
Pdensity := 1.0/Cells; 
NSort := C; 
PSort := C; 

end; {with} 
end; {for} 

end; {If} 

{Move real   target;   for generation  of positive Information} 
PTotalProb := Random; 
TC := 0; 
while TC < 7 do begin 

{Move  target  conditional  on velocity state} 
PTotalProb := PTotalProb - TMotion[LastMove,TC]; 
if PTotalProb < 0.0 then begin 

{this  is  selected movement} 
if ((TargetC-1) div XCells) mod 2=0 then begin   fodd row} 

case TC of 
1 : if TargetC > XCells then 

TargetC := TargetC - XCells; 
2 : if (TargetC > XCells) and 

(TargetC mod XCells <> 0) then 
TargetC := TargetC - XCells + 1; 

3 : if TargetC mod XCells <> 1 then 
TargetC := TargetC - 1; 

4 : if TargetC mod XCells <> 0 then 
TargetC := TargetC + 1; 

5 : if TargetC <= Cells - XCells then 
TargetC := TargetC + XCells; 

6 : if (TargetC <= Cells - XCells) and 
(TargetC mod XCells <> 0) then 
TargetC := TargetC + XCells + 1; 

end; {case} 
end else begin {even row} 

case TC of 
1 : if TargetC mod XCells <> 1 then 
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TargetC := TargetC - XCells - 1; 
2 : TargetC := TargetC - XCells; 
3 : if TargetC mod XCells <> 1 then 

TargetC := TargetC - 1; 
4 : if TargetC mod XCells <> 0 then 

TargetC := TargetC + 1; 
5 : if (TargetC <= Cells - XCells) and 

(TargetC mod XCells <> 1) then 
TargetC := TargetC + XCells - 1; 

6 : if TargetC <= Cells - XCells then 
TargetC := TargetC + XCells; 

end; {case} 
end; (if} 
LastMove := TC; 
(force  exit  from loops} 
TC := 7; 

end; {if} 
Inc(TC); 

end; {while} 

{Update Ndenslty and Pdensity Array for target movement} 
{First  loop will  create  Temp as new distribution;   second loop 
reassigns  Temp  to NDenslty} 

for C := 1 to Cells do begin 
if ((C-l) div XCells) mod 2=0 then begin   (odd row} 

if C > XCells then 
AdjCells[1] := C - XCells 

else AdjCells[l] := C; 
if (C > XCells) and (C mod XCells <> 0) then 

AdjCells[2] := C - XCells + 1 
else AdjCells[2] := C; 
if C mod XCells <> 1 then 

AdjCells[3] := C - 1 
else AdjCells[3] := C; 
if C mod XCells <> 0 then 

AdjCells[4] := C + 1 
else AdjCells[4] := C; 
if C <= Cells - XCells then 

AdjCells[5] := C + XCells 
else AdjCells[5] := C; 
if (C <= Cells - XCells) and (C mod XCells <> 0) then 

AdjCells[6] := C + XCells + 1 
else AdjCells[6] := C; 

end {if} 
else begin {even row) 

if C mod XCells <> 1 then 
AdjCells[1] := C - XCells - 1 

else AdjCells[1] := C; 
AdjCells[2] := C - XCells; 
if C mod XCells <> 1 then 

AdjCells[3] := C - 1 
else AdjCells[3] := C; 
if C mod XCells <> 0 then 

AdjCells[4] := C + 1 
else AdjCells[4] := C; 
if (C <= Cells - XCells) and (C mod XCells <> 1) then 

AdjCells[5] := C + XCells - 1 
else AdjCells[5] := C; 
if C <= Cells - XCells then 

AdjCells[6] := C + XCells 
else AdjCells[6] := C; 

end; (else} 
CellArray[C]A.Temp := CellArray[C]A.Ndensity*TMotion[7,0]; 
for TC := 1 to 6 do 

CellArray[C]A.Temp := CellArray[C]A.Temp + 
CellArray[AdjCells[TC]]A.Ndensity*TMotion[7,7-TC]; 

end; {for} 
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for C := 1 to Cells do begin 
with CellArray[C]A do begin 

Ndensity := Temp; 
end; {with} 

end; {for} 

{First  loop will  create  Temp as new distribution;   second loop 
reassigns  Temp  to PDenslty} 

tor  C := 1 to Cells do begin 
if ((C-l) div XCells) mod 2=0 then begin   (odd row} 

if C > XCells then 
= C - XCells else AdjCells[l] := C; 
and (C mod XCells <> 0) then 
= C - XCells + 1 else AdjCells[2] := C; 
<> 1 then 
= C - 1 else AdjCells[3] := C; 
<> 0 then 
= C + 1 else AdjCells[4] := C; 
XCells then 
= C + XCells else AdjCells[S] := C; 
XCells) and (C mod XCells <> 0) then 

= C + XCells + 1 else AdjCells[6] := C; 

AdjCells[l] 
if (C > XCells) 

AdjCells[2] 
if C mod XCells 

AdjCells[3] 
if C mod XCells 

AdjCells[4] 
if C <= Cells - 

AdjCells[5] 
if (C <= Cells 

AdjCells[6] 
end {If} 
else begin {even row} 

if C mod XCells <> 1 then 
AdjCells[l] := C - XCells - 1 else AdjCells[l] := C; 

AdjCells[2] := C - XCells; 
if C mod XCells <> 1 then 

AdjCells[3] := C - 1 else AdjCells[3] := C; 
if C mod XCells <> 0 then 

AdjCells[4] := C + 1 else AdjCells[4] := C; 
if (C <= Cells - XCells) and (C mod XCells <> 1) then 

AdjCells[5] := C + XCells - 1 else AdjCells[5] := C; 
if C <= Cells - XCells then 

AdjCells[6] := C + XCells else AdjCells[6] := C; 
end; {If} 
CellArray[C]A.Temp := CellArray[C]A.Pdensity*TMotion[7,0]; 
for TC := 1 to 6 do 

CellArray[C]A.Temp := CellArray[C]A.Temp + 
CellArray[AdjCells[TC]]A.Pdensity*TMotion[7,7-TC]; 

end; {for} 
for C := 1 to Cells do begin 

with CellArray[C]A do begin 
Pdensity := Temp; 

end; {with} 
end; {for} 

{Incorporate positive and negative Information} 
TempPtr := CellArray[TargetC]A.TWList; 
{TC will  step  *down*  through all  TW's.     The  linked list  TWList  Is 
sorted downward,   and will  advance whenever TC passes  each link. 
When  TC = TW In link,   then both false alarm or real  detection are 
possible with  that  TW;   otherwise only false alarm will   trigger.} 

TC := NumTW; 
{Assign NextMatcb  to first  tripwire In actual   target  cell's list} 
if TempPtr = nil then 

NextMatch := 0 
else 

NextMatch := TempPtr".TWNum; 

while TC > 0 do begin 
{Assign NextMatch  to next  tripwire In actual   target  cell's list} 
if TC < NextMatch then begin 

TempPtr := TempPtr".Next; 
if TempPtr = nil then 

NextMatch := 0 
else 
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NextMatch := TempPtrA.TWNum; 
end; {if} 

if TC = NextMatch then 
{Alarm If either actual  or false detection} 
Alarmed := Random < 1.0 - (1.0-TempPtrA.AlmProb) 

*(1.0-FalseProb)/(1.O-PalseProbAssumed) 
else 

{Alarm If false detection  only} 
Alarmed := Random < FalseProb; 
{this  Is value  of AlmProb for remote  cell-tripwire combinations} 

{Alj  = prob  tw j alarms given  target  in  cell  1 
= AlmProb If cell near tripwire 
= FalseProb  otherwise} 

{PI'   = PI   * Prod(j  alarmed,Alj)} 
{Nl'   = Nl   * Prod(j  alarmed,Alj/(l-Alj)) 

TC = j,   C =  1} 
If Alarmed then begin 
{iterate through all   cells} 
{Increase N/PDenslty In  cells  associated with  detecting TW} 

for C := 1 to Cells do begin 
{find tripwires near this  cell} 
TempPtr2 := CellArray[C]A.TWList; 
Searching := TRUE; 
{loop  until  detecting tripwire  located or determined not 
near  this  cell} 

while (TempPtr2 <> nil) and Searching do begin 
if TempPtr2A.TWNum = TC then begin 

{detecting TW found In  this  cell's  list} 
with CellArray[C]A do begin 

NDensity := NDensity*TempPtr2A.AlmProb 
/ (1.0 - TempPtr2A.AlmProb); 
{denominator counteracts  later 
multiplication by NAP} 

PDensity := PDensity*TempPtr2A.AlmProb; 
end; {with} 
Searching := FALSE; 

end; {If} 
TempPtr2 := TempPtr2A.Next; 

end; {while} 
{loop exits  if TempPtr2  = nil   (end of list)   or 

Searching = FALSE   (TW found)   or both} 
if Searching then begin 

{detecting TW not  found in  this  cell's list} 
with CellArray[C]A do begin 

NDensity := NDensity*FalseProbAssumed 
/(1.0 - FalseProbAssumed); 
{denominator counteracts later 
multiplication by NAP} 

PDensity := PDensity*FalseProbAssumed; 
end; {with} 

end; {if} 
end; {for} 

end; {if} 
{if not Alarmed,   later multiplication by NAP will  account for this} 
{advance  to next  TW} 
Dec(TC); 

end; {while} 

NTotalProb := 0.0; 
PTotalProb := 0.0; 
for C := 1 to Cells do begin 

with CellArray[C]A do begin 
{Incorporate negative information} 
Ndensity := Ndensity * NAP; 
{Calculate sums  to normalize} 
NTotalProb := NTotalProb + Ndensity; 
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PTotalProb := PTotalProb + Pdensity; 
end; {with} 

end; {for} 
NMMD := 0.0; 
PMMD := 0.0; 
for C := 1 to Cells do begin 

with CellArray[C]A do begin 
{Normalize} 
Ndensity := Ndensity / NTotalProb; 
Pdensity := Pdensity / PTotalProb; 
{Calculate  square  of missed distance} 
Dist :=  (CellArray[TargetC]A.CellX - CellX) 

♦(CellArray[TargetC]*.CellX - CellX) 
+ (CellArray[TargetC]A.CellY - CellY) 
*(CellArray[TargetC]A.CellY - CellY); 

NMMD := NMMD + NDensity * Dist; 
PMMD := PMMD + PDenslty * Dist; 

end; {with} 
end; {for} 
NMMD := Sqrt(NMMD); 
PMMD := Sqrt(PMMD); 

(Sort by Ndensity/Pdensity} 
{Uses Binary Heapsort.     Step 1;  build heap sorted with  < at  top. 

Step 2;   de-heap putting < at bottom. } 
{Step  1} 
Heapsize := Cells; 
for C := Heapsize div 2 downto 1 do begin 

NHeapify(CellArray,C); 
PHeapify(CellArray,C); 

end; {for} 
{Step  2} 
while Heapsize > 1 do begin 

TC := NHeapExtractMax(CellArray); 
CellArray[Heapslze+l]A.NSort := TC; 
Inc(Heapsize); 
TC := PHeapExtractMax(CellArray); 
CellArray[Heapsize+l]A.PSort := TC; 

end; {while} 

{Draw Current   Target  Distribution} 
{Toggle graphics  on/off  to  speed display} 
If  KeyPressed then begin 

CH := ReadKey; 
CH := UpCase(CH); 
if CH = 'G' then begin 

GraphlcsOn := not GraphicsOn; 
if not GraphicsOn then 

OutTextXY(320,180,'Graphics Disabled'); 
end; {If} 

end; {If} 

NTotalProb := 1.0; 
PTotalProb := 1.0; 

if GraphicsOn then begin 
SetFillStyle(SolidPill,Black); 
Bar(0,24,639,359); 

end; {If} 

for C := 1 to Cells do begin 
if CellArray[C]A.Nsort = TargetC then begin 

NContain := 1.0 - NTotalProb + 
Random*CellArray[TargetC]A.NDensity; 

if NContain <= 0.5 then 
Inc(NIn50AOU); 

end; {If} 
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if CellArray[C]A.Psort = TargetC then begin 
PContain := 1.0 - PTotalProb + 

Random*CellArray[TargetC]A.PDensity; 
if PContain <= 0.5 then 

Inc(PIn50AOU); 
end; {If} 

if GraphicsOn then begin 
with CellArray[CellArray[C]A.Nsort]A do begin 

if NTotalProb > 0.9460 then Color 
0.8007 then Color 
0.6065 then Color 
0.4111 then Color 
0.2494 then Color 
0 

if NTotalProb 
if NTotalProb 
if NTotalProb 
if NTotalProb 
if NTotalProb 
if NTotalProb 
if NTotalProb 
if NTotalProb 

9 else 11/3 3 d } 
8 else {2/3 3 d } 
7 else a s d ) 
6 else {4/3 3 d } 
5 else {5/3 3 d } 
4 else {2    3 d } 
3 else {7/3 3 d } 
2 else {8/3 3 d } 
1 {3    3 d.} 

= Black; 

13 53 then Color 
0657 then Color 
0286 then Color 
0111 then Color 

else Color 
if (CellArray[C]A.NSort = TargetC) then Color := 
{Update  containment region} 
NTotalProb := NTotalProb - Ndensity; 
if Color <> Black then begin 

SetColor(Black); 
SetPillStyle(SolidPill,Color); 

4 + 
Round(CellX/Radius*Scale); 
24 + 
Round(CellY/Radius*Scale - 
Scale); 
4 + 
Round(CellX/Radius*Scale + 
Scale*0.8660254); 
24 + 
Round(CellY/Radius*Scale - 
Scale*0.5); 
4 + 
Round(CellX/Radius*Scale + 
Scale*0.8660254); 
24 + 
Round(CellY/Radius*Scale + 
Scale*0.5); 
4 + 
Round(CellX/Radius*Scale); 
24 + 
Round(CellY/Radius*Scale + 
Scale); 
4 + 
Round(CellX/Radius*Scale - 
Scale*0.8660254); 
24 + 
Round(CellY/Radius*Scale + 
Scale*0.5); 
4 + 
Round(CellX/Radius*Scale - 
Scale*0.8660254); 
24 + 
Round(CellY/Radius*Scale - 
Scale*0.5); 

FillPoly(6,PolyPoints) 
end; {If} 

end; {with} 
with CellArray[CellArray[C]A.Psort]A do begin 

if PTotalProb > 0.9460 then Color 
if PTotalProb > 0.8007 then Color 
if PTotalProb > 0.6065 then Color 
if PTotalProb > 0.4111 then Color 

WHITE; 

PolyPoints[1] 

PolyPoints[2] 

PolyPoints[3] 

PolyPoints[4] 

PolyPoints[5] 

PolyPoints[6] 

PolyPoints[7] 

PolyPoints[8] 

PolyPoints[9] 

PolyPoints[10] 

PolyPoints[11] 

PolyPoints[12] 

= 9 eise {1/3 3 d } 
= 8 eise {2/3 3 d } 
= 7 eise {1   s d } 
= 6 eise {4/3 3 d } 
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= 5 else {5/3   s.d.} 
= 4 else {2  s.d.} 
= 3 else {7/3  s.d.} 
= 2 else {8/3   s.d.} 
= 1 {3   s.d.} 
=  Black; 

If PTotalProb > 0.24 94 then Color 
if PTotalProb > 0.13 53 then Color 
If PTotalProb > 0.0657 then Color 
If PTotalProb > 0.0286 then Color 
If PTotalProb > 0.0111 then Color 

else Color 
If (CellArray[C]A.PSort = TargetC) then Color := WHITE; 
{Update  containment  region} 
PTotalProb := PTotalProb - Pdensity; 
if Color <> Black then begin 

SetColor(Black); 
SetPillStyle(SolidFill, Color) ; 
PolyPoints[1]  := 324 + 

Round(CellX/Radius*Scale); 
:= 24 + 

Round(CellY/Radius*Scale - 
Scale); 

:= 324 + 
Round(CellX/Radius*Scale + 
Scale*0.8660254); 

:= 24 + 
Round(CellY/Radius*Scale - 
Scale*0.5); 

:= 324 + 
Round(CellX/Radius*Scale + 
Scale*0.8660254); 

:= 24 + 
Round(CellY/Radius*Scale + 
Scale*0.5); 

:= 324 + 
Round(CellX/Radius*Scale); 

:= 24 + 
Round(CellY/Radius*Scale + 
Scale); 

:= 324 + 
Round(CellX/Radius*Scale - 
Scale*0.8660254); 

:= 24 + 
Round(CellY/Radius*Scale + 
Scale*0.5); 

:= 324 + 
Round(CellX/Radius*Scale - 
Scale*0.8660254); 

:= 24 + 
Round(CellY/Radius*Scale - 
Scale*0.5); 

PillPoly(6,PolyPoints); 
end; {If} 

end; {with} 
end {If} 
else begin 

NTotalProb := NTotalProb - 
CellArray[CellArray[C]A.Nsort]A.Ndensity; 

PTotalProb := PTotalProb - 
CellArray[CellArray[C]A.Psort]A.Pdensity; 

end; {else} 
end; {for} 

SetColor(White); 
SetFillStyle(SolidFill,Black); 
Bar(0,360,639,479); 

Str(NMMD :4:6,S); 
OutTextXY(160,360,'Mean Missed Dist:  '+S); 
Str(PMMD :4:6,S); 
OutTextXY(480,360,'Mean Missed Dist:  '+S); 
Str(NContain :4:6,S); 

PolyPoints[2] 

PolyPoints[3] 

PolyPoints[4] 

PolyPoints[5] 

PolyPoints[6] 

PolyPoints[7] 

Po-lyPoints[S] 

PolyPoints[9] 

PolyPoints[10] 

PolyPoints[11] 

PolyPoints[12] 
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OutTextXY(160,380,'AOU to Include T:  '+S); 
Str(PContaln :4:6,S); 
OutTextXY(480,380,'AOU to include T:  '+S); 
Str(NIn50AOU/SimTime :4:6,S); 
OutTextXY(160,4 00,'Prop, in 50% AOÜ:  '+S); 
Str(PIn50AOÜ/Simtime :4:6,S); 
OutTextXY(480,400,'Prop, in 50% AOU:  '+S); 
Str(SimTime :6,S); 
OutTextXY(320,440,'Number of iterations:  '+S); 

Append(SimPile); 
writeln(SimFile,NMMD :10:4, 

NContain :10:4, 
PMMD :20:4, 
PContain :10:4); 

Close(SimFile); 
end; {while} 

CloseGraph; 
end. 
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